Alternative Splicing of CIPK3 Results in Distinct Target Selection to Propagate ABA Signaling in Arabidopsis

نویسندگان

  • Sibaji K. Sanyal
  • Poonam Kanwar
  • Harsha Samtani
  • Kanwaljeet Kaur
  • Saroj K. Jha
  • Girdhar K. Pandey
چکیده

Calcium (Ca2+) signaling is pivotal in transmission of information in the cell. Various Ca2+ sensing molecules work to sense and relay the encrypted messages to the intended targets in the cell to maintain this signal transduction. CBL-interacting protein kinases (CIPKs) are crucial components of Ca2+ signal transduction during various abiotic stresses. Although there are intron rich CIPKs in the plant genome but very little has been reported about their alternative splicing. Moreover the physiological significance of this event in the Ca2+ signaling is still elusive. Therefore in this study, we have selected CIPK3, which has highest number of splice variants amongst Arabidopsis CIPKs. Expression profiling of five splice variants of CIPK3 by qRT-PCR in four Arabidopsis thaliana ecotypes revealed preferential transcript accumulation but similar subcellular localization of the variants and interaction with similar CBLs. ABA and drought treatment resulted in the higher accumulation of the alternately spliced transcripts of CIPK3 in Arabidopsis ecotype Wassilewkija. The transcripts of CIPK3.1 and CIPK3.4 are relatively more induced compared to other alternative splice variants. Out of four splice variants studied, we found CIPK3.1 and CIPK3.2 showing preference for ABR1, a previously reported interactor of CIPK3. We conclude that the differential expression and choice of downstream partner by CIPK3-splice variants might be one of the mechanisms of Ca2+ mediated preferential regulation of ABA and other stress signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis.

Plants respond to environmental stress by activating "stress genes." The plant hormone abscisic acid (ABA) plays an important role in stress-responsive gene expression. Although Ca(2+) serves as a common second messenger in signaling stress and ABA, little is known about the molecular basis of Ca(2+) action in these pathways. Here, we show that CIPK3, a Ser/Thr protein kinase that associates wi...

متن کامل

Calcium Sensor–Associated Protein Kinase That Regulates Abscisic Acid and Cold Signal Transduction in Arabidopsis

Plants respond to environmental stress by activating “stress genes.” The plant hormone abscisic acid (ABA) plays an important role in stress-responsive gene expression. Although Ca 2 serves as a common second messenger in signaling stress and ABA, little is known about the molecular basis of Ca 2 action in these pathways. Here, we show that CIPK3 , a Ser/Thr protein kinase that associates with ...

متن کامل

Two distinct families of protein kinases are required for plant growth under high external Mg2+ concentrations in Arabidopsis.

Protein phosphorylation events play key roles in maintaining cellular ion homeostasis in higher plants, and the regulatory roles of these events in Na(+) and K(+) transport have been studied extensively. However, the regulatory mechanisms governing Mg(2+) transport and homeostasis in higher plants remain poorly understood, despite the vital roles of Mg(2+) in cellular function. A member of subc...

متن کامل

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017